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Abstract—There have been several algorithms which extend
the finite-difference time-domain (FDTD) solution of Maxwell’s
equations to nonlinear electromagnetic problems. Relative to
other methods, FDTD achieves robustness by directly solving for
the fundamental quantities, electric fieldE, and magnetic field
H in space and time, rather than performing asymptotic analy-
ses or assuming paraxial propagation and nonphysical envelope
functions. As a result, the FDTD method is almost completely
general and can account for any type of electromagnetic prob-
lems. As in linear cases, for a practical simulation, nonlinear
FDTD modeling also requires the development of absorbing
boundary conditions (ABC’s) to effectively absorb the nonlinear
electromagnetic waves for open nonlinear structures. In this
paper, based on the Berenger’s perfectly matched layer (PML),
a nonlinear PML (nPML) absorbing scheme is presented and
then implemented in the transmission-line matrix (TLM)-based
FDTD method. Numerical results are given to demonstrate the
effectiveness of the nPML proposed.

Index Terms—Absorbing boundary, absorption, FDTD, non-
linear PML, TLM.

I. INTRODUCTION

DUE TO THE potential applications such as all-optical
signal processing [1]–[3], properties of electromagnetic

waves in nonlinear media have received increasing attention
[1]–[10], [14], [15]. Since finding analytical solutions for
nonlinear waves without certain approximations is difficult,
numerical techniques, both in frequency domain [3]–[7] and
in time domain [1], [8]–[10], [14], [15], have to be em-
ployed. Among the numerical techniques of time domain
are various versions of finite-difference time-domain (FDTD)
schemes [1], [8], [14], [15]. One of these techniques is
the transmission-line matrix (TLM)-based FDTD method that
combines features of both FDTD and TLM methods [16].
The method can account for very general electromagnetic
problems and allows the direct use of field quantities and direct
implementation of anisotropics for simulation and modeling of
electromagnetic problems. Like the FDTD of Yee’s scheme,
the TLM-based FDTD has been successfully applied to the
nonlinear electromagnetic-wave problems [14].
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In order to apply the above mentioned FDTD methods to
open nonlinear structures (e.g., transmission-line structures),
an appropriate absorbing boundary condition (ABC) is re-
quired to truncate an infinite computational domain for a
practical simulation. Similar to the conventional ABC, the
requirement for the nonlinear ABC is that it is able to
effectively absorb nonlinear electromagnetic waves impinging
on it.

Since the initial work by Berenger [12], the perfectly
matched layer (PML) has been demonstrated in many cases
to be the most effective ABC for linear electromagnetic-wave
propagation [1], [13]. Standard PML’s consist of lossy layers
with both electric and magnetic conductivities [12]. By de-
liberately splitting the field quantities in Maxwell’s equations
and appropriately selecting loss parameters in PML regions,
zero reflections between the PML layer and vacuum and
between the PML layers themselves are achieved regardless
of incident angles and frequencies, while the waves inside the
PML region are attenuated as they propagate. When such an
attenuation is made large enough with a sufficient number of
the PML layers, the overall reflections from a PML absorbing
boundary become extremely small, being several orders of
magnitude lower than those achievable by other absorbing
conditions developed thus far. Various numerical experiments
have validated this claim.

Further studies and enhancements of the PML scheme
have been recently reported. The so-called modified PML
(MPML) is one of them [17]. In MPML, extra parameters
for permittivity and permeability are introduced to enhance
the absorption of the evanescent energy, but without affecting
the absorption performance for propagation modes. The result
is a further reduction of distance between the PML boundary
and scatters, leading to the saving of central processing unit
(CPU) time and memory.

In spite of all these developments, to the best knowledge
of the authors, all the PML schemes reported thus far are
applicable only to linear electromagnetic waves (where con-
stitutive parameters are independent of field intensities); they
cannot be directly applied to nonlinear open structures without
modifications. In this paper, we present a nonlinear PML
(nPML) scheme for the absorption of nonlinear electromag-
netic waves. It is based on the MPML with the differences
being that permittivity and permeability are now changed with
time and, therefore, need to be updated at every time step of
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Fig. 1. The PML geometry.

Fig. 2. The MPML geometry.

an FDTD simulation. The nPML scheme is implemented in
the TLM-based FDTD scheme [16] developed in our research
group. Numerical results confirm the effectiveness of nPML.
Implementations of the nPML in other FDTD schemes such
as Yee’s scheme [1] can be done in the same way and should
be straightforward. Note that the authors have presented the
original form of the nPML scheme in [7]. However, in this
paper, the nPML scheme is further enhanced by introducing
the iterative technique into the nPML operations, in addition
to the extensive numerical experiments, including soliton
propagation.

II. THE nPML SCHEME

In the PML scheme developed thus far, the relationships
between field component , and flux density , are
linear. In other words, the constitutive parameters of
a medium are constantly independent of the field intensities.
Therefore, the PML can absorb only linear electromagnetic
waves. The formulation of such a PML first involves the
splitting of the Maxwell’s equations, and then the introductions
of both electric and magnetic conductivity, as shown Fig. 1,
where a PML is placed in the-direction. As a result, the
electromagnetic wave traveling in the-direction will be
attenuated very quickly without reflections in the PML region
and thus absorbed.

To ensure zero reflections between layers, including the
interface between the solution domain and the PML, the
following matching condition must be satisfied [12]:

(1)

However, in the MPML, the extra relative dielectric con-
stants and are introduced and varied in the MPML
region (see Fig. 2). The result is that absorption of evanescent
energy is improved, while the absorption for propagation
modes remains the same. The dielectric constantin the first
layer at the interface between the solution domain and MPML

region is chosen to be the same as the dielectric constant of
the solution domain. It then gradually changes to bigger values
along the direction to the end layer of the MPML. Reference
[17] gives the details about the selection of the appropriate
and . The relationship between and is not constant
any more, but dependent on locations.

Again, to ensure the zero reflections, the following matching
conditions must be met [17]:

(2)

which allows the determinations of other quantities,, ,
, and .

Note that in (1) and (2), and are the permittivity and
permeability of the linear background medium. They are not
necessarily the vacuum permittivity and permeability.

Now, let us consider the situation of a nonlinear wave. For
a nonlinear electromagnetic wave, the relationships between
the field components , and flux densities , are
no longer linear. That is, permittivity and permeability of
a medium are not constants. In other words, they become
not only location-dependent, but also dependent on the field
intensity and, therefore, time. As a result, to enable a PML
to absorb such nonlinear waves in a time-domain scheme,
permittivity and permeability of a PML need to be changed
with time or numerically to be updated at each time step.

In a nonlinear medium, fields can be expressed in terms of
electric flux densities plus terms related to linear and nonlinear
polarizations. For simplicity, consider a one-dimensional (1-D)
case where we can have

(3)

Here, is the relative permittivity of a nonlinear medium
when the operating frequency goes to infinity, is the
linear polarization term, is the nonlinear polarization
term corresponding to the so-called “Kerr effect,” and
is another nonlinear polarization term due to the Raman
scattering. Equation (3) can be numerically realized in an
FDTD formulation with a recursive formula using-transform
[9].

If the and are found at each time, the equivalent
permittivity for the PML operations can be calculated as

(4)

Substituting it into the matching conditions (2), one can obtain
the other parameters in the matching conditions for PML and
then perform PML operations.

However, in an actual simulation, (4) asks for up-to-date,
which is a function of the up-to-date electric field. This
has to be updated at the current time step via the PML-split
FDTD equations. Therefore, one needs to solve (2)–(4) and the
split-PML FDTD equations simultaneously (instead of solving
them separately) in order to obtain. One of the techniques
is to use the iterative method. That is, first give an initial
guessed value for, substitute it into (3) and the split-PML
FDTD formulations to obtain the new and , and compute
the second iteration value forwith (4). Then, substitute this
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second value to (3) and the PML FDTD formulations, and
compute the third value forwith (4). Repeat the process until

converges to a stable value. In our case, we use on the
PML layer left (which has been calculated) to the current PML
layer as the first guess for and proceed with the iterations.
However, numerical experience shows that in the cases we
simulated, a single iteration is sufficient to give very good
absorption of a nonlinear wave. This may be due to the fact
that an FDTD mesh has to be made fine enough so that either
linear or nonlinear waves have small spatial variations across
two neighboring cells (otherwise, simulation results will not
be correct because of the possible large numerical dispersion).
As the result, the equivalent permittivity indicated by (4) will
not be changed much between two neighboring cells (or two
layers in our case), and the equivalent permittivity of the
layer left to the current layer can be a very good guess for
the equivalent permittivity of the current layer, leading to
the fast convergence. In consequence, the nPML computation
count does not increase in comparison with the linear PML.
A specific example will be given in Section III.

As a summary, the nPML computation procedure for each
time step can be described as follows.

1) Perform the regular nonlinear FDTD calculations in the
solution domain.

2) Obtain at the solution-domain layer which interface
with the nPML, and then use this value as the dielectric
constant of the first layer of the nPML region.

3) Find all the other nPML parameters required for the first
nPML layer based on the matching conditions (2) (in
the same way as that for the linear MPML). Perform the
nPML computation for the first layer using the above-
mentioned iterative method.

4) Record the ratio of to of the first nPML layer and
use it for the second nPML layer computation, again
using the iterative method. Once done, record of
the second nPML layer.

5) Use of the second nPML layer for the third nPML
layer and repeat the similar computation steps for third,
fourth, , until the last nPML layers. For each nPML
layer, of the previous layer is used as its guessed

value.
6) Go back to 1) for next time step computation.

The above scheme has been implemented in the TLM-based
FDTD method developed in our group. A three-dimensional
(3-D) code is written and used to validate the proposed nPML,
as described in the following sections. For comparison reasons,
a simple 1-D nonlinear wave, temporal soliton, and spatial
soliton, which had been studied before, were computed.

III. nPML A BSORPTION OF1-D NONLINEAR WAVES

Consider a 1-D Kerr-type material that assumes an instan-
taneous nonlinear response. The nonlinearity here is modeled
by the following very simple relation [1], [3]:

(5)

with .

Here, is the linear part of the refractive index while
is the nonlinear coefficient for Kerr-nonlinearity. is

dimensionless and has units of m/V . Generally, the
nonlinear term of (5) is very small compared to [1], [3].
Therefore, relative dielectric constant of the nonlinear medium
can be obtained approximately as [1], [3]

(6)

Assume that the nPML region is from layer 1 to layer
with layer 0 being in the problem domain. As discussed before,
we then have

(7)

as the first guess offor layer at
each FDTD time step. Since it is related to the instantaneous
electric-field intensity, it varies with time.

The matching condition, which dictates the relationships
among the electric conductivity, magnetic conductivity, per-
mittivity, and permeability, remains the same as (2). In our
simulation, 16 PML layers were used and was chosen
to be 44640 s/m. The other PML parameters were taken the
same as those in [17].

To further reduce the reflections, instead of placing perfect
conducting wall as a termination for the last nPML layer, a
resistance wall with the wave impedance of the last
cell [14] is employed. This should dissipate some of the wave
energy incident on it, thus decreasing the magnitude of the
waves reflected from the nPML termination.

The 3-D TLM-based FDTD with nPML is used to simulate
the 1-D problem [14]. A spatially distributed symmetric pulse
was excited at the initial time . The nonlinear parameters
for the nonlinear medium were taken as the same as [15]. To
ensure that the nonlinear wave is indeed excited, a reference
simulation with the linear medium of the same dimensions,
initial excitation, and grids was also run. Fig. 3(a) shows the
simulation results of the linear and nonlinear media terminated
with the same resistance wall without PML and nPML.

As can be seen, both linear and nonlinear waves are indeed
excited. They behave differently, especially for the reflected
waves. For the linear waves, both incident and reflected waves
are spatially symmetrical because the initial spatial excitation
is symmetrical. However, for the nonlinear waves, both for-
ward and reflected waves become spatially asymmetrical. They
are tilted toward the propagation direction. More significantly,
magnitude of the nonlinear reflected wave is much larger
than that of the linear reflected wave. This indicates that the
waves, both linear and nonlinear, react differently to the same
boundary, thus confirming that a nonlinear wave was excited.

Once existence of the nonlinear wave was confirmed,
16-layer PML’s and nPML’s were then inserted between the
solutions domain and the resistance wall in both linear and
nonlinear cases, respectively. Fig. 3(b) shows the simulation
results.

As can be seen, both reflected linear and nonlinear waves
become invisible and, therefore, can be assumed having been
absorbed effectively. We conclude that the nPML works very
well in absorbing the nonlinear waves.
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(a)

(b)

Fig. 3. (a) Simulation results for linear and nonlinear waves without PML’s.
(b) Simulation results for linear and nonlinear waves with PML’s.

Fig. 4. The nonlinear wave reflected from the nPML recorded at a fixed
spatial point.

For a quantitative description of the nPML absorption,
Fig. 4 shows the magnitude of the nonlinear wave reflected,
recorded at a fixed spatial point in the solution domain. Values
on the vertical axis were normalized to the peak value of the
incident wave and are shown in percentage. It can be seen
that the amplitude of the reflected nonlinear wave is very
small in comparison with the incident wave. The reflection
magnitude in reference to the peak of the incident wave is
less than 72 dB in time domain. It shows that the nPML
does absorb the nonlinear wave very effectively.

IV. nPML ABSORPTION OFSOLITONS

In this section, soliton propagation in one- and two-
dimensional cases is simulated with nPML. Solitons were

(a)

(b)

Fig. 5. (a) Soliton recorded at two different time instants: 8000th and
15 000th time steps. (b) The reflected waves after the soliton impinges on
the nPML.

chosen for our testing for two reasons: soliton propagation
involves not only nonlinearity, but also temporal or spatial
dispersion. As a result, the effectiveness of the nPML can be
evaluated in a wider scope. Secondly, solitons are the most
interesting nonlinear phenomena, which have been studied
theoretically and later proven experimentally. They have been
tested for long-haul error-free data transmission [18].

A. 1-D Temporal Soliton

The TLM-based FDTD has been successfully applied to
simulate 1-D soliton in Kerr-type nonlinear media and the
results has been verified with the results from other techniques
[14]. By terminating the nPML at both ends of the computation
domain, the effects of the nPML can be evaluated. In the
simulation, the soliton was assumed to be switched on at
in Type-RN Corning glass [1]. The nonlinear parameters are

and m /W. When the initial
pulse is given with sufficient strength, nonlinear effects will
be large enough to cancel the dispersive effects of the medium,
forming a soliton (i.e., a pulse whose temporal shape will not
change as it propagates). The incident field in our case was
a pulse with a center frequency of 137 THz modulated by a
hyperbolic secant envelope function with a characteristic time
constant of 14.6 f/s [9]. The FDTD cell size was 52.8 nm. The
size of the computation domain was 3032 cells terminated at
both ends with the nPML. Every nPML region had 16 layers
with being 94000 S/m and .

Fig. 5(a) shows an incident solitary pulse with amplitude of
about 1.2 10 V/m at two different times corresponding to
8000 and 14 000 time steps. The pulse had to be made strong
enough such as to engage the nonlinear behaviors in the pulse
dispersion, and thus induce the soliton propagation.

Fig. 5(b) shows the reflected pulse at 22 000 and 26 000 time
steps due to the terminated nPML’s. The maximum amplitude
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Fig. 6. Wave spreading in the linear medium (recorded at the 7800th time step).

Fig. 7. Spatial soliton recorded at the 7800th time step.

of the reflected waves is about 12 500 V/m. However, when
it is compared with the maximum of the incident wave, about
1.2 10 V/m, the reflected wave is only 0.1% of the incident
wave. This corresponds to absorption of about60 dB. Again,
the nonlinear electromagnetic wave was found to be absorbed
very well by the nPML.

B. Two-Dimensional Spatial Soliton

Two-dimensional spatial-soliton propagation was simulated
in this case. In a linear medium, when a spatial pulse is
propagating in a two-dimensional plane, the pulse will spread,
due to linear diffraction, in the direction transverse to the
intended propagation direction. However, if the medium is
replaced by a nonlinear medium, the transverse spreading
of the pulse can be completely cancelled by the transverse-
beamwidth sharpening effect of self-focusing due to nonlinear-
ity, provided that the pulse is initially given sufficient strength.
Consequently, the pulse will propagate without changing its
spatial shape, forming a spatial soliton. FDTD calculations
were made for such propagation. The initial excitation for a
single beam is of a hyperbolic-secant transverse profile with
an intensity beamwidth of 1.3 m and a carrier frequency

of 2.31 10 Hz ( m). The beam was assumed
to be switched on at in Type-RN Corning glass
again [1] and the nonlinear parameters were and

m /W. The two-dimensional case was
successfully simulated in [1] using the conventional FDTD of
Yee’s scheme.

To ensure that the spatial soliton can be indeed excited in
the FDTD grid, a parallel reference simulation for the same
medium, but without the nonlinearity terms (i.e., ), was
also run. Thus, the pulse propagation in this linear medium
should present traverse spreading (due to the linear diffraction)
and comparisons between the results for linear and nonlinear
media can be made.

Assuming that the -direction is the propagation, Fig. 6
shows the pulse propagation in the linear medium, while Fig. 7
shows the spatial-soliton propagation in the nonlinear medium.
The initial excitation pulses were exactly the same in the two
cases. As can be seen, the pulse in the linear medium indeed
spread (in the -direction in this case) as it propagates, while
the pulse in the nonlinear medium does not. This indicated that
the nonlinear medium was correctly simulated and a spatial
soliton was induced.
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Fig. 8. Variations of theEy-component of the spatial soliton with time.

Fig. 9. Fourier transform ofEy .

Once the induction of the spatial soliton was confirmed,
we proceeded to measure the nPML absorption of the spatial
soliton. To be able to measure the absorption numerically, we
ran two simulations: one with a longer computation domain
(serve as a benchmark solution) and the other with a shorter
computation domain with nPML terminated in both ends along
the -direction. In doing so, the absorption effect of the nPML
can be evaluated by comparing the results from the two
simulations.

The longer computation domain is with (in )
(in ) while the shorter one (which has the nPML

terminations) is with (in ) (in ). In both
cases, the FDTD cell size is 52.8 nm in both - and
-directions, and the -direction is the propagation direction.

The excitation was set at . An observation point
was selected at . For the longer domain simulation
with the number of iterations being selected as 2000, the field
recorded at the observation point can be considered as an
incident wave. The reason is that the wave reflected from
the terminations does not reach the observation point under
2000 iterations. We, therefore, can treat the longer domain
case as the infinite long case and its solution as a benchmark
solution for comparisons. The nPML chosen for the shorter
domain simulation again had a thickness of 16 nPML layers
with being 94 000 S/m and .

Fig. 8 shows the output electric field in time, recorded at
for the two different cases. The differences between

the two results are not visible, in spite of the fact that in both
cases, as expected, the electric fieldsoscillates in time.

Fig. 10. Relative errors of theEy simulated with nPML in frequency
domain.

Fig. 9 gives comparison of the electric fields in the
frequency domain between the two cases. A peak is shown
at the frequency of 2.31 10 Hz ( m) which is, as
expected, the carrier frequency of the excitation. The ripples
beside the peak can be considered as the result of truncation
of the time in simulation. It can be now seen that, in frequency
domain, the differences between the longer domain case and
the nPML case are also very small, even in the ripple region.
Fig. 10 shows the relative errors. As can be seen, the difference
is less than 0.1%, which corresponds to60 dB of absorption.
The nPML is again proven to work very well in absorbing the
nonlinear electromagnetic waves.

V. CONCLUSION

In this paper, an nPML scheme is presented for effective
absorption of nonlinear electromagnetic waves propagating in
a nonlinear medium. The nPML is established by varying the
permittivity and permeability of the nPML’s in accordance
with nonlinearity of a nonlinear medium. In the subsequent
numerical experiments, nonlinear waves, especially solitons
(which involve both nonlinear and dispersive effects of a
medium), were successfully simulated with the nPML termi-
nations. As a result, effectiveness of the nPML was demon-
strated. FDTD schemes can now be applied to nonlinear open
structures, and application scope of FDTD methods are further
expanded. Although the proposed nPML was implemented in
the TLM-based FDTD, it should also be easily implemented
in other FDTD schemes such as Yee’s scheme.

It is noted that at the time of this paper’s revision, a further-
improved PML scheme, the PML-D scheme, was reported in
[19] for an effective general absorption of propagating and
evanescent waves. The authors believe that the nPML scheme
proposed in this paper can be implemented with the PML-D
scheme for the effective absorption of both propagating and
evanescentnonlinear waves.
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